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1. Introduction

Let {X } (n =0,1,...) be a sequence of independent,n

identically distributed (i.i.d.) random variables (r.v.s)

with distribution function (d.f.) F , and define

(1.1) Mn = max(Xl,...,Xn) d max(X 0 'X'...,Xn-)

In a classic paper Gnedenko (1943) exhibited the class G

of all possible non-degenerate limit laws that can arise from

such sequences {Mn } , and discussed domains of attractionn

for the elements of G (that is, given the common d.f. F

of the X , what properties of F determine whether G E G

will be its limit law?). This work has been expounded and

extended in de Haan's (1970) tract, see also Galambos '1978).

The present paper has its origins in the asymptotic behaviour

of an extreme case of a storage model (Daley and Haslett (1982)

and Daley (1983)), namely, in studying possible limit laws as

i I of the r.v.

(1.2) Y(Y) F sUpn> 0 {Y n} , 0<1<I,

in the case that X > 0 a.s. This observation led us to
n-ninvestigate, limit laws using sequences 1w n (y)} of weight

functions more general than the geometric, and also to consider

the possibility of r.v.s like

(1.3) Z(5) - supn>0 {Xn-n6} (Y>O)

with the prototype sequence of translates {n6} replaced by

the indexed sequence {v n(6)}.

In what follows, we always take 0 < -y < 1 , where

= ----- ,,*4___.*



1.2

w0 (y) 1 > wn (Y) > w n+1 () +0 (n-') , w () - I ( - 1)

and 0 < 6 < ,where

v 0 (6) <vn < vn+(6) + (n -) and v n(U) - 0 (6 -0)

In section 2 we discuss the existence (i.e., a.s. finiteness)

of r.v.s like Y(Y) and Z() , and investigate the limit law

behaviour in sections 3, 4 and 5. When the limit law of M is

of the double exponential type, limit laws exist for both YO>)

and Z(.) and are also of double exponential type; when 2'1 has

any other limit law, a limit law for Y() will exist and for Z(-)

may exist, but not all three limit laws will be the same. The

results are summarized in section 6 where also a duality between Y(')

and Z(6) is exploited. Connections between the functional

equation of Gnedenko's general theory and the present limit laws

are exhibited in section 3, and there and in the subsequent

section we exhibit non-degenerate limit laws lying outside G

For the sequences {wn I involved, the supremum is evidently

zero unless Pr{X 0 > 0) > 0 , while for {v n}, if either of the

r.v.s Z(6) and Z(6)+A has a limit law (where A is any

constant), then so does the other and the laws are of the same

type. Accordingly we shall assume throughout that

(1.4) Pr{X < 01 = 0 , Pr{X > 0) > 0 ,

and define the positive (and possibly infinite) quantity

(1.5) sup{x : F(x) < I1.

More generally than (1.2) and (1.3) we define

(1.6) M(O) M(y;w) - sup {W n(Y)X n)

(1.7) Z() Z(6;v) sup {X -v (6))

n >O0 n

.} + 'i . + [ , + .' '+ '. " .- ,



1.3

and

(1.8) M().,6) =_M(Y,6;w,v) =_nsup 0{w n(Y)Xn -v n(6)1

Observe that if w n(y) = 1 or 0 as n(l-y) ) or > 1 , then

(1.9) M(l- 1/n;w) M =

so any results that we prove for M(y;w) must hold true for

{M n

nA



2.1

2. Existence.

In this section we discuss the a.s. finiteness of the r.v.

(2.1) M E M(w,v) - sup {w nX n -v n
n > 0 n

for given sequences {w and {v for whichn n
v >0, 0<w n<i
n-O - n

THEOREM 1. (a) Either M< - a.s. or M = a.s.

(b) M <- a.s. if and only if either

(i) , or

(ii) t =- = , and {v n  and {wn }

are such that

(2.2) E [1 -F((x+v n )/wn)] <
n=0

for some finite x.

Remarks . If wn = 0 for any n then the corresponding

term in the sum at (2.2) is taken equal to zero.

The condition at (2.2) can be expressed in terms of a

functional inverse as follows, assuming that (X+vn )w ulti.-ately

increases monotonically. This is true in particular when {Vn

and wn } are sequences as in section 1. And, note that

(2.2) cannot hold when t= unless either vn - or

Wn-0 0 (or both) as n- ; then it is no loss of generality

to take x -1 as in the following.

Let h(y) be any non-decreasing function satisfying

for y > 1

4 i..20
-~~~~ t



2.2

(2.3) h(y)< inf{n:(l+v n)/w n > y) < h(y)+l

Then (2.2) is equivalent to the condition

(2.4) Eh(X) < .

For example, when vn  0 and Wn = y we can take

h(y) = (logy) /log(l/v) , and the finiteness of

E log(max(l,X)) = E log(l+(X-l)+)

ensures that Y(y) at (1.2) is well-defined, as asserted

in the introduction.

Similarly, when wn 1 and v = n6 , we can take

h(y) = (y-l)/6 , and so the a.s. finiteness of Z(6) at (1.3)

is equivalent to requiring EX+ < 0

Proof of Theorem 1. (a) Since M is a function of the

independent r.v.s {w nX n -v }, the zero-one law implies that

Pr{M< x} = 0 or 1

(b) If (i) holds then M <- a.s. by

inspection of the defining relation (2.1). In proving (ii)

we may assume that wn > O for all n Now M=- a.s.

if and only if for all x',

Pr{wnXn - vn >x infinitely often) = I

and by the Borel-Cantelli lemma for independent events, this

condition is equivalent to

= Pr{wn Xn - v > x)
n= 0  n

- [I - F((x+v )/wn).
n 0



3. 1

3. Gnedenko's class G and limit laws for M(y,6)

It is appropriate at this stage to recall certain facts

about the class G . First, by a limit law G (understood to

be non-degerate) we mean that for some sequence of constants

{an} , {b n  the sequence of d.f.s {F n  has

F n(a n+bn) G(cx+d) (n- )

for all points of continuity cx+d of G. Here, c> 0 and

d is any constant. Thus, we do not distinguish between G(x)

and G(cx+d) in identifying this d.f. as a limit law: we say that

G(x) and G(cx+d) are of the same type.

Next, recall that Gnedenko (1943) identified the class G

of limit laws for {Mn as comprising all d.f.s G such that,

for every integer k=2,3,... there exist constants ak' bk

for which

(3.1) (G(x)) k = G(akx + bk) (all real x).

Moreover, G = G UG TuG A where the limit laws in these three

classes are as follows (the parameter a is any non-negative

constant):

o (x < 0),
(3.2) G(x) = D (x) =  -

exp(-x -c) (x > 0);

(3.3) G(x) = Y(x)= exP( -( -x) )

a (x 0);

(3.4) G(x) = A(x) = exp('e - x )  (-<x<M)

)- ..

- , . . . .4-



3.2

Suppose that for families of sequences {w n(y)) and

{Vn ()} as in Section 1 we can write 6 = 6(y) such that

6(h) 0 as y + 1 , and that there exist functions a(y) and

b() with a(Y) N 0 such that

(3.5) aM+b E a(y)M(y , 6 1)); w,v) + b(y)

converges to the limit law H as y * 1

THEOREM 2. If aM+b at (3.5) converges weakly to the

limit law H as y t 1 , then for every integer

k = 1,2,...

(3.6) Mk  Mk(,(y);w,v) Sup Xnk - Vnk U W
n>O

i/k
has aMk+b converging weakly to Hk (H) iversely,

the convergence of aMk+b for any integer k implies the

convergence of aM+b to a limit law H and hence of aMk +b

to (H)1/k for every k

Proof. Since w (Y) 1 1 and v (6(y)) 4 0 as y 4 1

sup {wn(Y)X n - V n( 6 ())} - sup Xn  ()"I)

0<n<r O<n<r

for each positive integer r . Consequently, defining

M(r) = sup{wn(y)Xn - VnlUlY))
n>r

it follows from (1.4) that for each such r that

Pr{M - M(r))- I as y t 1 . Then, for any a(y) and b(y)

we have as y + 1

... ,. - .- -, ~ ., -. ~ - - ,.-DI'=zt



3.3

(3.7) sup jPr{aM+b < y- Pr{aM(r)+b < ylJ < Pr{M M(r)1 -' 0
--v< y<CO

Fix the integer k1 , and let H(y,r) denote the d.f.

of aM(r)+b so that

H( 'rk) (y) = TI F[ (y-b(-h)+a(y)v (-))/a()w ( )
n=rk

k-i
= " E F[ (Y-b(Y)+a(y )+a(Y)vnk+j ())/a( )wnk+ .

j=0 n=r

By the monotonicity properties of {w n() and iv n( in n

each infinite product on the right-hand side is bounded above

andbeow y (),r+l) an C,r)andbelowrbyH and Hkr ,respectively, where

kkH kYr T F- (y-b(y)+a(y)V nk( )/a(' wnk(,

n=r

(Since F(O+) <1 , we need only consider

y-b( ) +a(O)vnk(Y) > 0.) Therefore

H (-,rk) (y) < (Hk (,r+l) (y)) k < H (),(r+l)k) (y) .

But it follows from (3.7) that for each r and k

sup IH(y 'rk) (y) - H(y ' (r+l)k) (y) - 0

as y 1 , and by taking r 0 and using (3.7) a second

time it also follows that

(3.8) sup lPr{aM+b < y) - (H( 'I) (y)) k 0

The argument establishing (3.7) can be used to show that



3.4

(3.9) sup iHk (YJ)(y) - H (Y) 0
-a <y<C0

for )l Combining (3.9) and (3.8) proves the results as

claimed.

COROLLARY 2.1. M(y,6(Y)) has a limit law in G if and only

if for each k , Mk(Y,6(y)) has a limit law in G In this case

the limit laws of M and Mk are of the same type.

Proof. Recall (cf. (3.1)) that the class G has the

property that G E G if and only if () e G for every positive

rational a , and that the laws G and (G)q are then of the

same type. The assertion now follows from the theorem.

Another corollary also follows immediately :

COROLLARY 2.2. HE G if and only if each Hk  is of the same

type as H

THEOREM 3. If for each k there are constants ak, bk

and a function fk(y) such that Mk() =d ak M(fk())+bk then

Proof. Let a(o)M( ,)+b(y) converge weakly as 1 to the

limit law H Then by Theorem 2 , a(-Y)Mk ()+b() converges

1/kweakly with limit law Hk = (H) But we can also express

the convergence of M as a(fk(y))M(fk (y))+b(fk(v)) converging

weakly with limit law H . Consequently, by Theorem 2.1.1

of de Haan (1970), H and Hk are of the same type, and the theorem

follows from Corollary 2.2.

Example 1. Limit law for Y(y) Referring to (1.2) , it is

clear that

Yk(Y) sup{y nkXnk} d Y(y k

n>O
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so limit laws for Y are in G

Example 2. Limit law for Z(6) . Referring to (1.3)

Z k(6) sup{Xnk nk } =d Z(kZ)
n0

so limit laws for Z are in G

It is important to note here that no claim is made about

the limit laws of Y( ) and Z(6) being the same, or being

the same as for Mn

Example 3. Limit laws for polynomial weights. Suppose

wn(y) = 1 +nil-.)) r
, V 0n n

Then taking h(y) = (y /r-l)/(l-y) , a.s. finiteness of

M(';w) is ensured by the finiteness of EX1 / r  (cf. Theorem 1).

Further

Mk(Y;w) =d M(l G k(l-y) ;w)

so limit laws for sup{X n/(l+n(I-t)) r are in G
n>O

Example 4. Limit law not in G Given i.i.d. -'x n

suppose that both {Mn) and Z(M) have limit laws but that the

limit laws differ. Introduce w ()'- 1 and v (f)=(r(U)-n)+n n+

for some integer-valued function r(.) to be specified. Then

M(6) = sup'X n  - (r(-) - n)+ =d max(Mr(:)'_(
n>0

with M and Z(6) independent. By choosing r(-) so that

r(6)- m (6-0) and Pr{M(6) = Z(6) = l-Pr{M(6) = Mr(c)} t0 or 1

as 6 - 0 , then any limit law for M(6)q G because the d.f,

is the product of two different types of d.f. in G

. . . ~ .. . -



3.6

In a little more detail, for example, suppose the d.f. of

X.i is 4 for some ai > 1 , and define r(6 as the integer

part of 1 6 i(l) Since the law of E M IlCclJ equals 4) O

whenever 1/ca is an integer, then the limit law of 1 /(XJ

equals t. . while the limit law of 6 1/a- 1 )Z (6) (c f. Theorem 7 below)

is

li r6/>0)Z y ep--1

- - - -- -- - -- -
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4. Domains of attractions for weight functions

In detailing the precise analytical form of a (non-trivial) limit law

as -y + for the r.v.s M(y,6(y);w,v) , equivalently of a limit for

H(Y)(y) Pr{a(-y)(M(y,6(y);w,v) + b(y)) - y)

= IT F[(b(y-) + v n(y) + y/a(-y))/w n()a ,
n=O

it is evident that some assumptions are needed concerning the way that

F(x) I 1 as x - Z , and that for each fixed -y we must have

(4.1) lim inf{(b(y) + v n(Y) + y/a(y))/W (-) } >

n-nn

The condition (4.1) implies that

-log H(Y)(y) - log F[(b(y)+v (y)+y/a(y))/w (-Y)--,
nOn n

(4.2)
=(1+o() [I [- F( (b(-y)+V n(-Y)+y/a(-Y))/Wno ))]

n=O

where, because by assumption H( ')(y) has a non-trivial limit as ). t 1

the term o(1) converges to zero uniformly on bounded intervals for y

All the results in this section essentially start from this -representation (4.2).

Recall that a function U mapping - (0,) into itself is said to

vary regularly (at infinity) with exponent P , -- <c < - , when

(4.3) 1ir U(tx)/U(x) = tp  (all x E ]R+ )

Gnedenko showed that Mn has a limit law in G if and only if k =

and 1 - F(x) varies regularly with exponent -a , and that I is then

its limit law, while its limit law is in G. if and only if f < - and

I - F(t-x 1 ) varies regularly with exponent -a and that T is then
Ada

. .. +y ... ..
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its limit law.

THEOREM 4. Suppose that l-F(x) is regularly varying with exponent

-0 0 , and that

(4.4) cc [ 1 - F(l/w n(y))) *(-y t 1)
n=O

Then the limit law of M(I,;w) exists e~nd equals Ct G

Proof. The finiteness of the sum at (4.4) allows us to conclude from

Theorem 1 that M(-y;w) < -a.s.

From the monotonicity of N{w (-y)) it follows that the function a('y)

defined by

(4.5) a(-y) -supla: Of [I - F(l/a w n-)]11
n=On

decreases monotonically in -y and -0~ as 'y-l I By the right-continuity

of F and the strict monotonicity in n of each sequence {w (-Y))

12 ' 1-F(l/a(-y)w n(-y))]I > 1 E Pr{X l/a(O)wn(y)
n=O nn=On

> I - Pr{X > l/a(y)} I~ (y -~ 1)

Consequently,

n=On

For each y>O0 we have from (4.2) with v n(-y) F0 and b(-y) =0 that

-log H(Y)y = (1l+o(l)) 7 [1 F(y/a(-y)w n(y))]

where the term o(1) is bounded by [1 -F(y/a(-y))]/2F(y/a(y)) By the

WI,
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regular variation assumption concerning F

[1 - F(y/a(y)w (-y))]/[l - F(l/a(-y)W())] y-an n

as y -+ 1 , and this convergence is uniform in n because 1 = w0(Y) Wn()

(all n and y) Thus

-log H(_) (y) = (l+o(l))y -  [1 - F(l/a(-y)Wn())]

n=O

y = - log lc(y) (. 1)

Example 5. Suppose F(x) = (x) Then, much as in example

6.1 of Daley and Haslett (1982), for 0 < -y< 1 and y > 0 we

have

Pr{(l- ya)I/a sup{yn Xn} <yl = exp(_y-) = 4 (y)
n>O -

The limit behaviour is trivial!

THEOREM 5. Suppose that < -. and 1- F(k-x - ) is regularly varying with

exponent -a . Then the limit law of Y(y) exists and equals +l E G .

Proof. By rescaling we can and shall assume that =1 . Define a() by

a(y) = inf{a> 0 a1(l -F(l-a-) < -(a+l)logy),

so that as y t I , a(y)

Write H(Y)(y) = Pr{a(y)(Y(y)-l) < -y) (O<y .. )

- Pr{sup ynx < -y/a(y)I
n>O

, "... . -*el
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Since a(y) - ( 1), we may assume that y<a(y) , and then there is

a least integer N(y) such that yN(y) <-y/a(y) For n > N(y)

ynXn < -y/a(y) a.s., and therefore, as at (4.2)

( -Y) N(y)-l
- log H J(y) = -log Pr( n {nX < - y/a(y)))

n=O

N(y)-l
= (I + o(l Z [ l- F(yn(1 -y/()))]

n=O

where, since 1 -y/a(y) - 1 (-y+l) , the term o(l) is bounded for

given y by [I - F(l-y/a(O))]2F(l-y/a(O)) .

Since the terms in the last summation decrease monotonically in n

and each term - 0 as y 1 1 , the sum can be approximated by the integral

r log(l-y/a(y))/logy(4 .7 ) ( ~ - 0 " 1 - / o ) ) d
0

[ (-log- - f El -F(l-v-I )]v- 1 (v-l 1 dv

a(y)/y

on substituting I-v-1 = e-u log(1 -y/a (y)

= (- logy)-1(l+o(l))(y/(a+l)a(y))[l - F(l-y/a(-y))]

by the integral theorem for the tails of regularly varying functions (e.g.,

Theorem 1 of VIII.9 of Feller (1966)). But by definition of a(o), for

any c ->0

1 < [l -F(l -1/(a(-Y)-E))]/[(a(y)-C) (a+l)(-logY) I

=I-F(1 I/.(a()E)) . -l-F la
= (1 -o(I - I/a()) a (a(y)(y +l )(-1ogy)

. = (I +o(1))[l -F(I - I/a(y})]/[(y)(+l)(-logy)j< 1+o(1)



4.5

as y 1 , and thus [1 -F(I -1/a(y))] /a(-y)(c+l)(-logy) 1 1 as y * 1

Consequently,

- log H(,Y)(y) = (1+o(1))Y"+  ( 1)

proving the theorem.

Comparison of Theorems 4 and 5 prompts the question as to whether

Theorem 5 may hold with a general class of weight functions as in Theorem 4.

The following example shows that any such result would require such a class

to be more restricted than the general class of Theorem 4.

Example 6. Suppose we are given i.i.d I X) with I-F(I-x - 1) regularly varying

with exponent -a . Then the limit law for {Mn ) is Y' , while the limit

law for Y(y) is Y+l , Much as in Example 4, consider the weights

Y (n-r(y))+ where r(y) is an integer. Then

M( ) = sup (n-r(Y))+X n d max(Mr( y)'Y
n>O

with M r() and Y(y) independent. By choosing r(y) appropriately,

a limit law may be exhibited for M(Y ) as the product of the limit laws

and Y+l of Mr(,) and Y(y). Hence, it is not in G

For example, if Pr{Xn < 1 - x} = min(l,e-x) ,

Pr{r(y)(M r(y)-1) < -x) = e-x

Let a(y) be determined for Y(y) as in Theorem 5. If we now set r(,)

equal to the integer part of a( ) , then a non-trivial limit law for

a(y)(M ()-1) exists and is a product as asserted. If either

r(y) =o(a(y)) or a(y) -o(r(y)), then any limit law for M (Y ) is trivial

(i.e., equals 0 or 1).

THEOREM 6. Suppose that [ < and is such that {M ha s ' as its limit

law. Then a limit law for Y(y) exists and it too equals A.

Proof. Appealing to (4.2) we seek functions a(y) and b(y)

- --- . --.
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such that

(4.8) [1 - F(yn(b(y)+y/a(y))] -~ eY( 1

n=0

Observe that, because 1M n has limit law A

(4.9) [1 - F(x+yR(x)fl/[l - F(x)J -+ -

as x -* where

(4.10) R(x) = [I-F(x)]1  (I~ - F(u)]du

xf

Further, from (4.9) it can be checked that the convergence there is uniforr

on compact sets, and therefore (as will be needed below)

1 > f -I [I - F(u)Jdu/x 1' fr[1 - F(u)]du

=(1 - F(x + ZRx )
J 1 - Fx 14yR~x)/x

0

(4.12) > 1 - e-y (x-*c)

by restricting the range of integration to the closed interval [0,y')

for some finite y'

Supposing a(.) and b(.) are given, and that y > by) (for otherwise the

sum at (4.8) is not convergent), the sum at (4.8) is approximated as

at (4.7) by o[ b y y/ y)/ o y , -F e ulo b y a( ) ]d

foI
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where the upper limit = if t and the approximation is asymptotically

exact provided F(b(y) + y/a(y)) -~1 . Assume this last holds.

Substituting v for the argument of F , the integral equals

(log Y)- fI v- (1 - F(v))dv
b(y)+y/ a(y)

We now treat the cases te=- and 1< - separately.

Supposing t~~ it follows from (4.12), written as

f -I [I - F(v)]dv/x(l F [1 - F(v)]dv -~ 1 (
x

that the sum at (4.8) equals

(l+o(l))(log y) 1 [b(y)+y/a(y)IY1 ily+l (I (- F(u))du

-(1+o(1))(-logyY-
1 [b(,Y)+y/a(N)]f 1 [1-Fb )ya-)]b(+/a ' ,

Define b(y) as the root in (0,a-) of

e
(4.12) bfy (I -F(u))du =b(y) (- log)

and set a(y) = I/R(b(-y)) , so that b(-y) -* t and b(o) + y/a(y)-

(y t 1). Then from (4.9),

1 - F(b(-y) + y/a(-y)) = I - F(b(y) + y R(b(y))

- e-Y(1+o(l))(1 -F(b(-y));

f rom (4.11) b(-y) + y/a,(y) - b (y) [l + y R (b (y) )/b (y) I

- (1+o)(1))b(-y)
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and from (2.5.25) of de Haan (1970),

R(b(y) + y R(b(y))) (l+o(l))R(b(y))

The sum at (4.8) is now seen to be equal to (l+o(l))e - y , and the

case ; = is established.

In the case £ < , with a(.) and b(.) as at (4.12), it is

trivially true that when b(y) + y/a(y) - t ,

(-log y)I f v 1 (l - F())dv

b(y)+y/a(y)

= (-log ') "l (l+o(l1))C 1  (l-r)d

-log 0+00)t _ rt(I - F(v))dv)b(o)+y/ao(,)

and the similar analysis as for t= - follows to establish the result.
nTheorems 5 and 6 with the case Wn(y) = yo of Theorem 4 can be summed

up as follows

Suppose Mn has a limit law GEG; then Y(y) has a limit law in G,

being equal to G unless G = Y_ in which case the limit law is a+l

Equivalently, the d.f.s F yielding limit laws for Mn  in G , yield

limit laws for Y(-y) in G\{'C 0 <a<Il) . From Example 1 , all the

limit laws for Y(y) belong to G , so there remains open the question

as to whether there exists any F yielding a limit law for Y(y) in

{Y 0 a<l1)
' 1

7 Ai



5. Domains of attraction for location functions

The same prefatory remarks to section 4 apply in considering

possible limit laws for r.v.s like IZ(6) :6>0 ' . our results

are not quite as general as for M(y ; w) in that it is only for

certain d.f.s for which A is the limit law of :M that we

have obtained results with fairly general sequences 1, n11 (see

part (b) of Theorem 10 and section 6, but note also Theorem 8 where

v n(6) =n 1/"' ).

THEOREM 7. Suppose that 1 - F(x) is regularly varying with

exponent -a < -1 Then the limit law of Z(6) exists and equals

'Oc-1

Proof. For all sufficiently small 6 >0 define

a(c supxa > 0: a (I - F(a Gt - 1)5 )

so that a(6) + 0 as 6 4 0 . Using (4.2), we study for 0 < y <.

H()(y) Pr~a(f) sup{X n- n 6 < y

D f F(n 6+ y/a(5))
n=0

so

-log H (y) = (1l+o(l)) Z [1 - F(n6 + y/a(5,)).'
n0O

= (l+o(l)) J 1 -F6 u +y/a Ildu

= (l+o(l))6- i (C [1 - F(v)2 dv

(.)- (1+ o(1) ) 6 1 (a - ) 1 (y/a(6))[1 - F(y/a(6))]

-(l+o(l))y a(())- 1 F(l/a(6))]/(x- 1)6

ELL tj,
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(5.2) = ( +o(1))y

provided

(5.3) (a(6)) [l - F(l/a(6))]/(a-l)6 - 1 as 0

But, much as in the proof of Theorem 5,

1 (1/a(5) - E)[I - F(1/a(6) - c)I/(a- 1)

1 - F(l/a(") - c) • (1- E a(6)) 1 - F(i/a(6))

1 - F(i/a(6)) a(6) (t- 1)6

and since by right-continuity the last term > 1 (all 5) , and

the other terms - 1 as a(6) - 0 , (5.3) holds and the theorem is

proved.

Remark. A r.v. X with P as its d.f. has EX < x if and only if

> 1 Since

sup{X - n 6 < a.s.
n

if and only if

CQII
> 1 - F(n6) - 6 [1 - F(v)ldv = - EX

n=0 0

the constraint on the exponent a in the theorem is seen to be

necessary.

THEOREM 8. Suppose that 1 - F(x) is regularly varying with

exponent -a, and for 0 < 8 < a define

(5.4) Z (6) E sup {X - n / .61
nmO n >"0

,. ~~~ ~ ~ ~ V4 _V"-- _ - 1 ...-



5.3

Then a limit law for Z (6) exists and equals 1_

Proof. Let a(6) be a function to be defined later, with

a(6) - 0 as 6 -* 0 , and such that a(6)Zj(6) has a non-trivial

limit law. With H (y) = Prfa()Z(6) < Y)

(y) cc Pra1)/6) y

-log H (y) = (1 [1 - F(nl6 +y/ad))]
n=0

= (1+o(1)) E [1 - F(y/a( )+ 6 ul/')]du0

(5.5) = (1 +o(1))6 -  J v El - F(y/a(5) + v)-dv
0

We now establish the following analogue of Theorem 2.6 of

Seneta (1976).

LEMMA. When G(x) varies regularly with exponent -a and

a > t > 0 , the function

(5.6) GB(x) - v -1 G(x + v)dv00

is regularly var ing with exponent a-v ; specifically,

(5.7) G (x)/x G(x) j u -(l + u) - a du (x - -

Let y > 0 be fixed for the time being, and consider

G a(x) jyx v) -l( 1+ -u dv

x Sc v G(x)v _

f yx1 + -x 1+dv

x G(x) J

SF -
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(5.8) + (v -i G(x + v) dv
yx x G(x) X

For 0 < Z < , the integral

v B v+-I v ! - L v

x

is a beta function, and on 0 < v < yx , (x+ v) G(x+ v)/x' G(x) -1

as x- -* Consequently the first integral - 0 as x- c by

dominated convergence.

As in the proof of Theorem 2.6 in Seneta (1976), with

0 < K a-

v G(v+x)dv = Jx v-(v+x) L(v+ x)dvx ) yxyx

where L(v) = vG(v) is a slowly varying function,

sup -v L(v)) . iv (- +r dv
v >x+yx jyx ( x '

(x+yx) L(x + yx) x - a +  f y-i +v -a+r dv

yx , i -

(y + 1) G~ G(x + yx) -1 + v -a+n dv
yx

It follows that the modulus of the second integral at (5.8) is at

most

(Y ~~ + 1)o-ri1 i
(y+llcx-  (G(x+yx)/G(X)) - - l X -axn dv

fyx I X
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(1~ +}~ 0 (J)-Y+ 61 dv

which may be made arbitrarily small by taking y sufficiently

large. The lemma is now established.

Applying the lemma to the expression at (5.5), we have

-log (y)= (1+o(1)) (y/a(2) [1- F(y/a(2)

= (1 + O(I)) 6 - y- - ) (a (6i))- 1 - F (1,1a( '

Thus, determining a(6) by

(5.9) a(a) = sup{a > 0: [(l - F(i/a))// :

and establishing the analogue of (5.3), -log H (Y) _Y_

(6- 0) and Theorem 8 is proved.

THEOREM 9. Suppose that k < and that 1 - F(,-x - ) is

regularly varying with exponent -a Then the limit law of Z()

exists and equals %a+l

Proof. Much as in the proof of Theorem 5, we show that, taking

Z = 1 without loss of generality,

Pr{a(f) sup{Xn-n6} <-y,. - exp(-y + l  (0 < y <

where for general £

(5.10) a(6) = inf{a > 0: [1 - rF(Z - £6) 1/a < ( + 1)>_,

The details are similar and omitted.

THEOREM 10. (a) Suppose that F is such that {M n  has A

as its limit law. Then a limit law for Z(6) exists and it too

equals A

-ftV -- e n . ,
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(b) If additionally k = and

R(x) = J El - F(u)Jdu/LI F (X)

(5.11) = E(X -X x> x) -1/u (x- )

for some 0 < ct < then for sequences {Vn (".)t satisfying

(5.12) Z PriX > v n(6)) < ,

n=o n

(5.13) Pr{suplX n- Vn(6)) - a(6) < y/b(6)L - exp(-e - ) (U 4 0)

where for sufficiently small 6 > 0

(5.14) a(6) = sup{a: Z El - F(a(6) + v (6)] > 1
n= 0 n

and

(5.15) b(6) = I/R(a(6))

Proof. In the particular case v n(6) = n6 of part (a), we can

define a(6) in place of (5.14) by the root of

1 =-1 [ - F(v)Jdv
a(6)

- { l - F(a(6) +6u)ldu0

- (1+o(1)) Z [1 - F(a(6) + n 6)]
n=0

Now the convergence we seek to show is that

LU
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exp(-e -y ) = lim Pr{sup{X - V (n6)} - a(6) < y/b(6&)
6+0

= lir f F(a(6) + y/b(6) + v n(6))
640 n=0

-lim H ( 6 ) (y) say.
5+0

Much as before, and in the case v (6) = n 6n

-log H(o) (Y) = (1+o(1)) E [1 - F(a(6) + y/b(,) + n
n=0

(5.16) (i+o(i)) J[- F(a(,-) + y/b () + u) Idu"0

= (I+o(i)) 6 -  [i ~ - F(v)idv

a (6) +y/b (6)

= (1+o(1)) 6 [1-F(a(6)+yR(-))]Ra()+y (-))

= (1+o(i)) 6- 1 [1-F(a(6))]e- y R(a( )+y R(1))

using Theorem 2.5.1 of de Haan (1970),

= (1+o(1)) e - y R(a(6)+y R(6))/R(a(6))

e-Y

as at de Haan's equation (2.5.9). Part (a) is proved.

For part (b), we have in place of the relation above (5.16)

that

-log H( (y) (1+0(1)) Z l1-F(a(6) +y/b(6) +v (6))]
n=0

*w ~ ~ li -V-, .~ ~
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In view of (5.14), in which, much as in section 4, the infinite

sum is asymptotically equal to 1 for 6 4 0 , it is therefore

enough to show that we may write

7 [1- F(a(6) + y/b(6) + v n(6))]n=0n

= (i+o(l))e -  [1 - F(a(6) + y/b
n=0

While a direct proof can (presumably) be constz-ucted, it is simpler

to appeal to the duality argument of section 6 and apply Theorem 4.

Details are given in the next section.

tit
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6. Duality between scale and location functions

Since for positive {X } and 0 <y < 1

sup {Yn X = exp( sup {logX - n log(-,-

n >0 n n 0 n

: exp( sup "Wn - n 6 1

where Wn = logXn  and 6 = -logy , it is proper to exhibit any

relationship between the results of sections 4 and 5. For brevity,

write DA M(.), DAy(.) and DAZ (.) to denote the domains of attract](.:,

of the limit law (.) for the respective sequences M , Y(!) ,nc

( Then most of Theorems 4 to 10 can be phrased as follows:

F E DA (%V) a F E DA y( ) and (when a>l)

F E DA (4l)

F E DA(e) F E DAy (T +l) and F E DA(. +)

F E DANI(A) - F E DAy(A) and F E DAz (.A)

When the d.f. 1 - F(x) of the r.v. X varies regularly with

exponent -a , [I - F(tx)J/[l - F(x)J- t -a  (x..) for 0 < t

Consequently, since

Pr{logW > y + T/} = Pr{W > ey e / }

= (1+o(l)) e- T Pr{W > ey }

S(1+ o(l)) e- T Pr{logW > y)

.a
A, * Or

-. - .- - . --w*~J1 107
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the r.v. W = eX  has its d.f. E DA M(A) with E(W-xjW > x) -1/a

as x- - . Conversely, when W = eX satisfies these conditions,

1 - F(x) varies regularly with exponent -a .

It is this converse statement which enables part (b) of Theorem

10 to be deduced from Theorem 4. To see this, write w n(6) =

exp(-v (6)) , al(6) = exp(-a(6)) , W = exp(X n ) , so that
n 1n n

Xn - v n(6) - a(6) y/b(6)

if and only if

aI (6)wn (6) Wn <exp(y/b(6))

Now

[ Pr{W n > /w n(6)) E= Pr{X > V n(6))
n=0 n=0 n

whose finiteness is assumed at (5.6), and

(6) = exp(-sup{a: Z [i - F(a(6) + v (6))] >i i1)
n=0

exp(-sup{a: Z Pr{W > l/e w (6) > 1
n=0 n

= sup{al: I Pr{W > 1/aIwn(6 )} < 1)
n=O

The condition at (4.4) is satisfied and a(y) at (4.5) may be re-

placed by a1 (6) , and Theorem 4 therefore applies to sup{w n(6) Wn}
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